免费在线观看av,久久激情视频一区二区三区,中文字幕人成无码人妻,亚洲欧美国产另类视频

聯系我們

深圳市亞銳智能科技有限公司

深圳市福田區沙頭街道天安社區泰然六路泰然蒼松大廈五層北座501-3

(86)755 8272 2836

Robert

14137848

zzqrob

Sales@szarray.com.cn

設備CT改善(雙源CT詳細資料大全)

發布者:亞銳發布時間:2024-06-22訪問量:27

大家好,關于設備CT改善很多朋友都還不太明白,不過沒關系,因為今天小編就來為大家分享關于雙源CT詳細資料大全的知識點,相信應該可以解決大家的一些困惑和問題,如果碰巧可以解決您的問題,還望關注下本站哦,希望對各位有所幫助!

本文目錄

  1. 雙源CT詳細資料大全
  2. CT和pt是什么
  3. 照CT有什么作用

一、雙源CT詳細資料大全

英文全稱為Dual Source CT(DSCT),是一種通過兩套X射線球管系統和兩套探測器系統同時采集人體圖像的CT裝置。

基本介紹中文名:雙源CT外文名:dual-source computer tomography專業:醫學成像技術背景,CT技術發展歷史,DSCT開發背景,結構,工作原理,套用,輻射劑量,結語與展望,背景自英國工程師 Hounsfield于 1972年研制成功第一臺 CT機起,醫學影像領域出現了一次又一次的技術革命。 2004年以前,CT技術的發展主要是在球管和探測器運動方式以及射線束覆蓋范圍上的變革,直至 2005年西門子推出全球首臺雙源 CT( dua-l source computer tomography, DSCT),使得 CT成像技術才有了更進一步的發展,CT心血管成像才能與數字減影血管造影( digital subtraction angiography,DSA)相媲美,并極大地降低了常規 CT心血管成像假陽性的機率。 2006年中國北京協和醫院率先引進了中國第一臺雙源CT。目前除開展一些常規檢查外,主要還用于心血管檢查、肺結節的計算機輔助檢測、胸痛三聯征檢查、體部灌注成像和結腸仿真內鏡等,均取得了良好的效果。開展的研究性工作主要是利用其獨有的雙能量成像技術,包括體內結石成分及性質的鑒別、肌腱與韌帶的 CT重建成像、急性肺栓塞的早期診斷。 CT技術發展歷史 CT技術的發展按 X射線束的形狀及掃描方式不同,被公認為經歷了以下 5次大的技術變革:單束平移-旋轉方式;窄扇形束-平移旋轉方式;寬扇形束旋轉-方式;寬扇形束靜止-旋轉方式;電子束 CT。 20世紀 80年代主要是掃描速度的角逐,在此期間,碳刷和滑環技術的出現促成了螺旋 CT的誕生,并迅速取代了單一的橫斷面 CT。 20世紀 90年代至21世紀初,CT技術的發展又以努力增加縱軸覆蓋范圍為目標,先后出現了 4/16/32/40層 CT機。直到 2004年,西門子推出全球首臺 64層螺旋 CT機( SOMATOM Sensation 64)。此后,鑒于諸多機械制造方面的限制,許多專家認為 CT機已發展到了極點。但次年西門子在北美放射學年會( RSNA)上又推出了全球首臺 DSCT系統( SOMATOM De finition),徹底打破了傳統的 CT技術理念,引發了 CT史上的一次新革命。 DSCT開發背景 CT自誕生后很快就被套用于臨床檢查,尤其是螺旋 CT出現后被廣泛套用于人體各個部位的檢查和診斷。但對于運動器官如肺、胃腸道、大動脈,尤其是心臟來說,一次檢查必須要求在有限的時間內完成,且要盡可能保證掃描期間患者無呼吸運動。否則,輕者會出現影像模糊、鋸齒狀偽影,重者根本得不到具有診斷意義的圖像,檢查無法完成。另外,空間解析度也是一個重要參數,同樣影響診斷的正確率。鑒于以上技術限制,西門子拋開了傳統的技術理念,在成熟的 SOMATOM Sensation 64技術和 Straton零兆金屬球管的基礎上,在機架內整合了兩套64層圖像數據采集系統,使得整個機架在完成 90b旋轉后即可獲得一幅優質影像。機架旋轉 1周為0. 33 s,但只需完成 90b旋轉后即可完成圖像采集,所以其時間解析度達到了 83 ms,實現了單扇區數據的采集和重建,克服了”多扇區重建技術“帶來的諸多弊端,極大地提升了圖像質量,提高了診斷正確率,這套裝置即為世人注目的 DSCT。圖1德國西門子雙源CT結構結構 DSCT整機基本構成包括 2個主機電氣柜( 1主1輔)、機架、檢查床、水冷系統、成像控制系統( imagecontro l system, ICS)、圖像重建系統( im age reconstructionsystem, IRS)及圖像后處理系統等。核心部分主要是 2套既相互獨立,又相互聯系的數據采集系統。主要有 2個相互獨立的高壓發生器 A和 B,2個 Straton零兆金屬球管 A和 B,2組超高速稀土陶瓷探測器 A和B及 2套相對應的數據采集裝置 A和 B組成。除 2套探測器因受機架內可利用有效空間的限制,橫向上的長度不同,故而導致有效探測野( FOV)不同外,其余同類部件完全相同。高壓發生器 2個,每個最高功率可達 80 kW,當DSCT 2套采集系統同時工作時,最高功率可達 160kW,遠高于普通 64層 CT機。 X線球管 2個,球管 A和球管 B均是西門子擁有專利技術的 Straton零兆金屬球管,最大電壓 140kV,最大功率 80 kW,最大電流 666 mA,包括 X射線管組件、偏轉電子系統和冷卻裝置。轉子部分直接由發動機驅動,并在較大程度上旋轉對稱。陰極帶有可選擇設定的獨立發射系統、偏轉電子系統,實現了 Z軸方向上的飛焦點技術,焦點額定值為 0. 6*0. 6及 0. 8* 0. 9。冷卻系統是單獨的機械組件,不同于 X射線管組件,通過可以彎曲的油管相連。陽極靶面直接與循環油相接觸,因而實現陽極直接冷卻,陽極熱容量高達 6. 5 MHU/min( 4. 8 MJ/min),堪稱“零兆球管”。用戶在使用中完全不必再為球管的熱容量擔心,可以實現高功率、大范圍的連續掃描,甚至可以在保證空間解析度的前提下一次性完成對患者的全身掃描。 2組超高速稀土陶瓷探測器,每組均由 40排探測器組成,中間32排準直寬度為 0. 6 mm,兩邊各有4排準直寬度為 1. 2 mm的探測器。其中一個弧度為約 60b的主探測器組,且與球管 A相對應,另一個弧度為約 32b的輔助探測器組,與球管 B相對應。由于機架內部空間有限,使得 2套探測器橫向長度不同,因此掃描覆蓋野不同。 DSCT具有 78 cm的大機架孔徑及 200 cm的掃描范圍,擴展了臨床的套用范圍。機架運動部分和多螺旋 CT一樣,也是采用了碳刷和低壓滑環技術,但與它們不同的是旋轉部分采用了電磁直接驅動技術。工作原理兩套X射線的發生裝置和兩套探測器系統呈一定角度安裝在同一平面,進行同步掃描。兩套X射線球管既可發射同樣電壓的射線也可以發射不同電壓的射線,從而實現數據的整合或分離。不同的兩組數據對同一器官組織的分辨能力是不一樣的,通過兩組不同能量的數據從而可以分離普通CT所不能分離或顯示的組織結構。即能量成像。如果是兩組數據以同樣的電壓的電流值掃描則可以將兩組數據進行整合,快速獲得同一部位的組織結構形態,突破普通CT的速度極限。 DSCT有兩種工作模式,即單源模式和雙源模式,均可通過控制臺進行相關設定。單源模式時主要數據采集與重建系統 A工作,數據采集與重建系統B處于關閉狀態。此時與一臺普通 64層 CT機無異,即由球管 A發射 X射線,經受檢者衰減后被探測器 A接收,然后再經相應的圖像處理和重建后產生相應部位的 CT圖像。1次掃描(即 1個采集周期)球管和探測器組至少要旋轉 180b才能獲得足夠的數據,重建出圖像,最多可獲得 64層圖像。定位像及頭頸部、胸腹部及四肢等一些常規平掃、增強掃描常采用單源模式。雙源模式時, 2套數據采集與重建系統同時工作,2套球管與探測器組合,各自獨立發射及接收射線,獨立完成圖像處理,但在圖像重建時,由 2套采集系統獲得的數據既可以重建出 2組獨立的圖像,也可以重建出 1組融合的圖像,前者 1個采集周期與單源模式相同,即球管和探測器組至少要旋轉 180b,主要用于骨骼及鈣化的分離、鑒別組織與膠原成分等;后者 1個采集周期球管和探測器組只需旋轉 90b,由 2組數據采集系統獲得的 2組數據經相應的數學運算、組合后即可實現單源下旋轉 180b的效果,但時間解析度提高了 1倍,主要用于心臟等時間解析度要求極高的檢查。套用傳統螺旋CT由于僅有一套X射線發生裝置和一套探測器系統,所以在掃描高速運動物體時(比如冠狀動脈)將會顯得力不從心。通常情況下,工程師通過加快CT的旋轉速度來提高CT對運動物體的撲捉能力,但是受限于工業水平和CT旋轉時產生的巨大離心力,目前最快的CT也只能達到0.27秒旋轉一圈。雙源CT系統圖2雙源CT成像圖同時使用了2個射線源和2個探測器系統,能夠以83ms的時間解析度采集與心電圖同步的心臟和冠狀動脈圖像。該系統能夠在不需要控制心率的情況下,對高心率、心率不規則甚至心律不齊患者進行心臟成像。同時,2個射線源能夠輸出不同能量的X射線。利用雙能曝光技術明顯改善CT的組織分辨力。 DSCT單從結構上看與普通 CT機差別不大,但從臨床套用分析的某些方面卻有著普通 CT機不可比擬的優勢。心臟成像 DSCT最大的優勢在于心臟成像方面。雙能量成像即在兩種不同的能量下成像。其依據是不同成分的組織在不同的 X射線能量照射下表現出的 CT值不同,再通過圖像融合重建技術,可得到能體現組織化學成分的 CT圖像,即組織特性圖像。普通掃描對于普通檢查,DSCT只用數據采集系統 A,數據采集系統B處于關閉狀態,此時相當于一臺普通的 64層 CT機。輻射劑量 CT的輻射問題早已受到了廣泛的關注。盡管現有的CT設備一般都會將輻射劑量控制在安全劑量范圍內,但我們仍然希望CT檢查時的輻射劑量能夠越低越好。盡管雙源CT系統使用2套X線球管系統和2套探測器組,但其在心臟掃描中的射線劑量都只有常規CT的50%。由于其具備很高的時間解析度,能夠在一次心跳過程中完成采集心臟圖像,從而使利用多扇區重建的大劑量掃描方法成為過去。另外,雙源CT采用了依據心電圖的適應性劑量控制,最大程度地降低了心臟快速運動階段的放射劑量。這些技術的綜合使用使圖像的采集速度和效率提高了1倍,即使與能量效應最高的單能掃瞄器相比,雙源CT在正常心率條件下的放射劑量將至少降低50%。結語與展望 DSCT是基于西門子成熟的 64層 CT技術之上的嶄新設備,在掃描速度、時間解析度和空間解析度上有了更高的突破,其整體優越的性能主要依賴于Straton零兆金屬球管、電磁直接驅動技術、靜音掃描技術、特殊散射線校正重建技術、特殊的射線劑量調控技術,特別是適應性心電門控劑量調控技術的套用。在冠狀動脈成像方面有著普通CT機不可比擬的優勢,雙能量成像方面也有其獨到的優勢,但由于諸多亟待解決的問題,其臨床實際價值尚需大量的臨床驗證。但從總體上說,DSCT是CT技術上的一次新革命,其開創了 CT史上的新紀元。

二、CT和pt是什么

CT是指電流互感器、PT是電壓互感器,兩者為二次設備如保護、儀表、自動控制提供輸入數據,二次設備根據輸入數據進行綜合分析、加工作為設備動作、顯示、調整的依據,因此說CT、PT為電氣二次設備正常工作的前提條件是洽入其氛的、適當的。

說到CT、PT主要涉及如下問題:

1、原理問題

PT、CT兩者都是根據電磁感應原理設計的,但兩者在正常運行時工作狀態很不相同,表現為:(1)CT二次側可以短路,但不得開路;PT二次側可以開路,但不得短路。

(2)相對于二次側的負荷來說,PT一次內阻抗較小以至于可以忽略,可以認為PT是一個電壓源;而CT的一次內阻很大,以至可以認為一個內阻無窮大的電流源。

(3)PT正常工作時的磁通密度接近飽和值,故障時磁通密度下降;CT正常工作時磁通密度很低,而短路時由于一次側短路電流變得很大,使磁通密度大大增加,有時甚至遠遠超過飽和值。

2、極性問題

(1)CT一般采用減極性接法。即:當一次電流從P1流入、P2流出時,二次電流是從S1流出、S2流入。一般CT外觀均能看到P1,P2,S1,S2。

(2)需要強調的是:單獨的CT極性判別沒有意義,比如差動保護兩側CT極性需要配合得當才為正確,測量、計量用CT極性要與電壓極性相配合才為正確,失磁,功率,阻抗等保護用CT也要與電壓極性相配合才為正確。

(3)PT一般同樣采用減極性接法,極性測試方法大致相同。

3、準確等級問題

(1)CT準確級的標識:

(a)保護用電流互感器的準確級是以其額定準確限值一次電流下的最大復合誤差的百分比來標稱其后標以字母“P”表示保護用。

保護用電流互感器的標準準確級為:5P和10P;

(b)保護用電流互感器按用途分為穩態保護用(P)和暫態保護用(TP)

暫態保護用電流互感器準確級分為TPS、TPX、TPY、TPZ四個級別。

TPS和TPX鐵心均不帶氣隙,因此并不限制剩磁,二者特性相似。當電流互感器嚴重飽和時二次電流殘余電流小,因此適用于對保護復歸時間要求嚴格的斷路器失靈保護的電流起動元件;另一方面,此類CT磁阻較高,汲出電流小,適用于CT并接的場合。TPY和TPZ級互感器鐵心帶有氣隙,因而磁阻較大,不易飽和,使暫態特性大大改善,而TPZ級僅保證交流分量最大峰值瞬時誤差在一定范圍內,不能保證低頻分量誤差且勵磁阻抗過低,因而不推薦用于發電機組等主設

三、照CT有什么作用

CT是“計算機X線斷層攝影機”或“計算機X線斷層攝影術”的英文簡稱,是從1895年倫琴發現X線以來在X線診斷方面的最大突破,是近代飛速發展的電子計算機控制技術和X線檢查攝影技術相結合的產物。CT由英國物理學家在1972年研制成功,先用于顱腦疾病診斷,后于1976年又擴大到全身檢查,是X線在放射學中的一大革命。我國也在70年代末引進了這一新技術,在短短的30年里,全國各地乃至縣鎮級醫院共安裝了各種型號的CT機數千臺,CT檢查在全國范圍內迅速地層開,成為醫學診斷中不可缺少的設備。

CT是從X線機發展而來的,它顯著地改善了X線檢查的分辨能力,其分辨率和定性診斷準確率大大高于一般X線機,從而開闊了X線檢查的適應范圍,大幅度地提高了x線診斷的準確率。

CT是用X線束對人體的某一部分按一定厚度的層面進行掃描,當X線射向人體組織時,部分射線被組織吸收,部分射線穿過人體被檢測器官接收,產生信號。因為人體各種組織的疏密程度不同,X線的穿透能力不同,所以檢測器接收到的射線就有了差異。將所接收的這種有差異的射線信號,轉變為數字信息后由計算機進行處理,輸出到顯示的熒光屏上顯示出圖像,這種圖像被稱為橫斷面圖像。CT的特點是操作簡便,對病人來說無痛苦,其密度、分辨率高,可以觀察到人體內非常小的病變,直接顯示X線平片無法顯示的器官和病變,它在發現病變、確定病變的相對空間位置、大小、數目方面非常敏感而可靠,具有特殊的價值,但是在疾病病理性質的診斷上則存在一定的限制。

CT與傳統X線攝影不同,在CT中使用的X線探測系統比攝影膠片敏感,是利用計算機處理探測器所得到的資料。CT的特點在于它能區別差異極小的X線吸收值。與傳統X線攝影比較,CT能區分的密度范圍多達2000級以上,而傳統X線片大約只能區分20級密度。這種密度分辨率,不僅能區分脂肪與其他軟組織,也能分辨軟組織的密度等級。這種革命性技術顯著地改變了許多疾病的診斷方式。

在進行CT檢查時,目前最常應用的斷層面是水平橫斷面,斷層層面的厚度與部位都可由檢查人員決定。常用的層面厚度在1~10毫米間,移動病人通過檢查機架后,就能陸續獲得能組合成身體架構的多張相接影像。利用較薄的切片能獲得較準確的資料,但這時必須對某一體積的構造進行較多切片掃描才行。

在每次曝光中所得到的資料由計算機重建形成影像,這些影像可顯示在熒光屏上,也可將其攝成膠片以作永久保存。此外,其基本資料也可以儲存在磁光盤或磁帶里。

設備CT改善和雙源CT詳細資料大全的問題分享結束啦,以上的文章解決了您的問題嗎?歡迎您下次再來哦!